Identification of TRIML2, a novel p53 target, that enhances p53 SUMOylation and regulates the transactivation of proapoptotic genes.
نویسندگان
چکیده
UNLABELLED The tumor-suppressor protein p53, encoded by TP53, inhibits tumorigenesis by inducing cell-cycle arrest, senescence, and apoptosis. Several genetic polymorphisms exist in TP53, including a proline to arginine variant at amino acid 72 (P72 and R72, respectively); this polymorphism alters p53 function. In general, the P72 variant shows increased ability to induce cell-cycle arrest, whereas the R72 variant possesses increased ability to induce apoptosis, relative to P72. At present, the underlying mechanisms for these functional differences are not fully understood. Toward elucidating the molecular basis for these differences, a gene-expression microarray analysis was conducted on normal human fibroblast cells that are homozygous for P72 and R72 variants, along with subclones of these lines that express a p53 short hairpin (shp53). Approximately three dozen genes were identified whose transactivation is affected by the codon 72 polymorphism. One of these is the tripartite-motif family-like 2 (TRIML2) gene, which is preferentially induced by the R72 variant. Importantly, the accumulated data indicate that TRIML2 interacts with p53, and facilitates the modification of p53 with SUMO2. TRIML2 also enhances the ability of p53 to transactivate a subset of proapoptotic target genes associated with prolonged oxidative stress, including PIDD, PIG3 (TP53I3), and PIG6 (PRODH). These data indicate that TRIML2 is part of a feed-forward loop that activates p53 in cells expressing the R72 variant, particularly after prolonged stress. IMPLICATIONS The defined actions of TRIML2, in part, explain the underlying molecular basis for increased apoptotic potential of the R72 variant of p53.
منابع مشابه
Cell Death and Survival Identification of TRIML2, a Novel p53 Target, that Enhances p53 SUMOylation and Regulates the Transactivation of Proapoptotic Genes
The tumor-suppressor protein p53, encoded by TP53, inhibits tumorigenesis by inducing cell-cycle arrest, senescence, and apoptosis. Several genetic polymorphisms exist in TP53, including a proline to arginine variant at amino acid 72 (P72 and R72, respectively); this polymorphism alters p53 function. In general, the P72 variant shows increased ability to induce cell-cycle arrest, whereas the R7...
متن کاملP-60: Nano-Particle TiO2 Enhances Apoptosis in Testicular Tissue; Evidence for p53, bcl2, cyp19 Genes Expression
Background: Nano-particle Titanium Dioxide (TiO2) is a noncombustible, odorless powder that is widely used in different fields of industries. Previous reports showed that chronic exposure to TiO2 adversely impacts the testicular tissue and down-regulates the antioxidant capacity and down-regulates the endocrine status of the testicles. Present study was designed in order to identify the role of...
متن کاملHzf Determines Cell Survival upon Genotoxic Stress by Modulating p53 Transactivation
A critical unresolved issue about the genotoxic stress response is how the resulting activation of the p53 tumor suppressor can lead either to cell-cycle arrest and DNA repair or to apoptosis. We show here that hematopoietic zinc finger (Hzf), a zinc-finger-containing p53 target gene, modulates p53 transactivation functions in an autoregulatory feedback loop. Hzf is induced by p53 and binds to ...
متن کاملNovel Isatin-based activator of p53 transcriptional functions in tumor cells
Bioinorganic medicinal chemistry remains a hot field for research aimed at developing novel anti-cancer treatments. Discovery of metal complexes as potent antitumor chemotherapeutics such as cisplatin led to a significant shift of focus toward organometallic/ bioinorganic compounds containing transition metals and their chelates as novel scaffolds for drug discovery. In that way, transition met...
متن کاملA novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis.
Transcription factor p53 regulates its target genes through binding to DNA consensus sequence and activating the promoters of its downstream genes. The conventional p53 consensus binding sequence was defined as two copies of the 10-bp motif 5'-PuPuPuC(A/T)(T/A)GPyPyPy-3' with a spacer of 0 to 13 bp, which exists in the regulatory regions of some p53 target genes. However, there is no such p53 c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer research : MCR
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2015